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Abstract-Based on the theories of Seeger's dislocation pile-up and Orowan's dispersion hardening, the
hardening behavior of single crystals was found to obey Prager's kinematic hardening rule, Under single
slip, yield surface moves along its normal while under multislip it moves along the direction of incremental
stress. The theory developed is consistent with the Bauschinger effect; it is also in good agreement with the
observations of Edwards and Washburn on the latent hardening of zinc, cadmium and copper crystals,

I. INTRODUCTION

The derivation of the elastic-plastic behavior of a polycrystalline aggregate from those of its
constituent single crystals is a fundamental problem in metal plasticity. An accurate derivation
requires the utilization of both correct single crystal properties and a physically consistent
mathematical method which can properly account for the grain interactions. Though several
methods have been proposed in the past[1-7], relatively few theories on the hardening law of
single crystals have been introduced. The existing hardening laws include Taylor's isotropic
hardening [1], Koiter's "independent" hardening [8] and Hill's general "interdependent"
hardening [9]. The independent hardening law is physically inconsistent. The isotropic hardening
law is attractive in its simplicity and certain physical justifications under proportional loading.
But because it is in direct contradiction to the Bauschinger effect [10, 11], it can lead to serious
errors under reversed and non-radial loading conditions. Recently, based on Orowan's classic
dispersion hardening [12, 13] a new hardening law was proposed by Weng and Phillips[l4]. This
new law is consistent with the Bauschinger effect; it falls within the general framework of Hill's
interdependent hardening law. This theory, however, considers only single slip. Since crystal
grains in a polycrystalline aggregate easily undergo multiple slip it is important that the theory
developed be extended into this condition. This is the prime objective of this paper. In addition
to Orowan's mechanism, Seeger's dislocation pile-up[15] will also be incorporated in the new
hardening law. Finally to place the present theory in proper perspective the developed
hardening law will be compared with Prager's kinematic hardening rule [16]. Our consideration
will be limited to small deformation so that crystal rotation can be neglected.

2, SEEGER'S DISLOCATION PILE-UP AND ITS APPLICATION
TO WENG-PHILLIPS' HARDENING LAW

We reiterate that our objective here is to develop a hardening law for single crystal grains so
that the properties of a polycrystalline aggregate can be better understood. Single crystals
behave differently in an aggregate. In order to remain compatible with their neighboring grains
the prolonged "easy glide" region is greatly shortened, and in most instance simply disappears.
What is particularly relevant to the theory of work hardening is the presence of dislocation
pile-ups against the grain boundaries, in addition to the pile-ups against the large, strong
obstacles. The additional pile-up against the grain boundaries has added an important factor
that Seeger's pile-up theory is especially applicable here. Orowan's dispersion hardening is
important in the fact that engineering metals generally contain impurities or precipitates. It is
believed that the combination of these two mechanisms would provide a more adequate
account on the hardening behavior of crystal grains.

In their study of the origins of work hardening in both face-centered-cubic and hexagonal
close-packed crystals Seeger and his associates [15, 17] attributed strain hardening to two
factors: the long range, temperature independent dislocation pile-up (TG) and the short range,
temperature dependent dislocation intersections (TS)' It was found that although TS and TG are
of comparable magnitude in the early Stage I the relative contribution of TS to the flow stress is
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substantially reduced in the early Stage II, and becomes almost negligible at the end of this
stage. Since crystal grains do not experience Stage I deformation dislocation pile-up is
considered to be the main source of work hardening.

Consider a fully annealed crystal. When the resolved shear stress T on a slip system is below
the critical shear stress To, extensive dislocation movement does not occur (dislocations can be
generally assumed to remain stationary), and deformation is elastic (lattice deformation). As T

reaches To slip or dislocation movement begins to take place. The presence of grain boundaries
and large obstacles prevent the continued dislocation motion and results in the dislocation pile
ups (see Fig. 1). At low and intermediate temperature dislocation climb process is not significant
enough to remove this pile-up configuration. Because of the dislocation pile-up a back stress is
developed. For continued dislocation movement this back stress has to be overcome by the
applied stress and this results in the work hardening. At some stage of plastic deformation the
flow stress has increased from TO to To + liT. The configuration of the pile-up is characterized by
the average dislocation spacing; closer spacing requires higher liT value.

Now if the applied stress is gradually released unloading takes place. Unloading is not
accompanied with a reversed dislocation motion until the yield condition in the reversed
direction is satisfied. It is known that the concept of back stress was first introduced by
Taylor[18]. Based on the equilibrium consideration Orowan[13] argued that according to
Taylor's model reversed dislocation movement will take place as soon as the applied stress is
released. This in principle will not occur if a threshold stress, such as TO, is required for any
significant dislocation motion. In reality according to Seeger[15] some sessile dislocations (e.g.
Lomer-Cottrell dislocations in f.c.c. crystals) can develop at the tail of the pile-up groups and
stabilize the piled-up dislocations from immediate release upon unloading. In view of the fact
that the resultant acting force on the piled-up dislocations is still along the forward direction
upon immediate unloading, it is unlikely that any significant reversed dislocation motion will
take place along the reversed direction. Much like the concept that the developed back stress
tends to resist the dislocations with an effective hardening liT, the repulsive force will tend to
push the piled-up dislocations to move in the reversed direction [19]. With this back stress, the
yield condition in the reversed direction is satisfied when T = -(To -liT). The hardening
behavior in the active slip system associated with Seeger's pile-up theory is seen to be
"kinematic" in nature.

The kinematic nature of Orowan's dispersion hardening is attributed to the long-range back
stress generated by the dislocation loops encircling the dispersions and the accumulation of
weak obstacles in front of mobile dislocations. This property was discussed in [14].

The combination of Seeger's dislocation pile-up and Orowan's dispersion hardening leads to
the condition that while dislocations move, on the one hand they push away the weak obstacles
and pass by others leaving them encircled with dislocation loops; on the other they pile up
against the grain boundaries and strong obstacles. Both mechanisms are kinematic in nature and
result in the Bauschinger effect under reversed loading. These predictions are seen to be in
good agreement, both quantitatively and qualitatively, with the observations of Edwards et
al. [10] on cadmium crystal (see Fig. 2).

\ T /
\ - /

Fig. I. Seeger's dislocation pile-up.
Fig. 2. Stress-strain curve of a cadmium crystal under reversed slip (10).
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Fig. 3. Stress-strain curve of a zinc crystal under changing slip system[21].

Hardening not only occurs in the active slip system, it also occurs in the latent ones and this
causes latent hardening. The latent hardening law associated with Seeger's theory can be
established by considering the stress field of a dislocation pile-up and the Peach-Koehler force
acting on a dislocation [20] due to this pile-up stress. An immediate consequence of this
consideration is that, when the slip direction, or the slip plane normal of the latent system is
perpendicular to that of the active one, the effective force vanishes. This consideration leads to
an identical hardening law established in [14] based on Orowan's mechanism. This hardening
law states that when the angle between the glide directions of the active and latent slip systems
is denoted by 8, and that between their glide planes by ¢J, the amount of hardening in the latent
slip system is given byt

A:r cos 8 cos ¢J. (1)

This hardening law is in good agreement with the observation of Edwards and Washburn [21] on
the latent hardening of zinc crystal (see Fig. 3).

To facilitate our later formulation we recall some useful relations established in [14] here.
When a crystal is under a combined stress Uij, the initial yield conditions of a slip system for the
forward and reversed slips are respectively given by

Q2iQIPij = TO

Q2iQljO'ij = - To

(2a)

(2b)

where Qij;: cos (xi, Xj), XI and X2 being the slip direction and the slip plane normal, respectively,
and Xi the material axes. At certain stage of plastic deformation the flow stress in the active slip
system increases to To +AT for the forward slip and decreases to - (To - AT) for the reversed
slip. Denoting the active slip system as the first system its yield conditions for these two slip
directions are respectively given by

(1) (I)

Q2iQljO'ij = To +AT

(I) (I)

Q2iQIPij = - (TO - AT).

(3a)

(3b)

The amount of active hardening AT is related to the incremental loading AUij from the initial
yield surface by

(I) (I)

AT = Q2iQljAuij. (4)

tFor the sake of simplicity and comparison with other hardening laws we shall neglect the effect of stress relaxation
studied in [14] in this paper. Thus lire = lir.
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The yield conditions for any latent slip system, generally called system 2, are

(Z) (Z) (2.1)

QZiQIjUij = To +AT cos t/J

(Z) (Z) (Z.I)

QZiQljUij = - (TO - AT cos t/J)

(5a)

(5b)

(Z,I)

where t/J is the angle between the normals of the yield planes of the second and first slip
(Z,I)

systems, given by cos t/J = cos (J cos lfJ,
In crystalline plasticity the combination of a slip plane and a slip direction on this plane is

traditionally called a slip system. Slip can take place along the positive (forward) or the negative
(reversed) direction as discussed above. This consideration provides one pair of yield planes to
each slip system. Though this concept is useful to the understanding of the physics of plastic
deformation, it is not convenient to the description of hardening rule, because the forward and
reversed slips of the same slip system have to be treated separately.

To circumvent this inconvenience we redefine here that a slip system is consisted of a slip
plane and one slip direction on this plane. The other (opposite) slip direction with the same slip
plane is considered to form another slip system. With this new definition it can be shown that
the subsequent yield planes of both active and latent slip systems, originally given by eqns
(3a, b) and (5a, b) can be combined into

(k) (k) (k.1)

QZiQljUij = TO +AT cos t/J (6)

where k refers to the kth slip system under the new definition. When the subsequent yield plane
given by eqn (6) is plotted for all slip systems, the envelope of these planes gives rise to the
subsequent yield surface of the single crystal. In the special case when AT = 0 eqn (6) will give
the initial yield surface. This definition will be adopted in the remaining sections of this paper.

3. SUBSEQUENT YIELD SURFACE UNDER MULTIPLE SLIP

Though some crystals (e.g. h.c.p.) can have a prolonged "easy glide" under some special
loading condition, most others with higher slip systems (e.g. b.c.c. and f.c.c.) can readily
undergo multiple slip. In particular for a crystallite to remain compatible with its neighboring
grains five independent active slip systems are generally required. The hardening rule of a single
crystal under multiple slip is particularly important to the study of the constitutive relations of a
polycrystalline aggregate.

Extending the hardening law established in (l) into multislip condition, we find that when
there are N simultaneous active slip systems, the latent hardening in a slip system is given by

N (n) (n)

L Tn COS (J COS lfJ
n=1

(7)

(n) (n)

where Tn is the active hardening of the nth active slip system, (J and lfJ refer to the same angles
indicated above between the considered slip system and the nth active slip system.

For multiple slip to occur the yield conditions of at least two slip systems have to be
satisfied simultaneously, and the applied stress has to lie at the corner of yield surface.
Consider Fig. 4. When the single crystal is under an incremental loading AUii> denoted by vector
AB, the yield conditions of both first and second slip systems are satisfied. The questions are:
where is the subsequent yield surface following such an incremental loading? Would eqn (6)
still provide the subsequent yield surface? What are the values of ATn in eqn (7)?

Under multiple slip (duplex slip in Fig. 4) the yield conditions of both active slip systems
continue to be satisfied. The final stress state B thus again has to lie at the intersection of the
subsequent yield planes of these two slip systems. Neglecting small grain rotation the sub-
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Fig. 4. Subsequent yield surface under multiple slip.
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sequent yield planes PB and BQ can be obtained by parallel translation of the initial yield
planes MA and AN to this position. It is evident from this figure that the total hardening in the
first slip system is given by

and that in the second slip system it is given by

(2) (2)

AF = Q2iQljaUij.

(8a)

(8b)

Since both slip systems are active under aUjj, each total hardening given in eqns (8) is
consisted of two parts: the active hardening due to the dislocation movement of its own system
and the latent hardening due to the dislocation movement of the other one. From the analysis of
previous section the latent hardening of one slip system due to the active hardening of another
system is given by aT cos I/!. If vector AB is decomposed into AC and AD along the normals of
the yield planes, it is readily seen that

and

(2.1)

AE=AC+ADcos I/!

(2,1)

AF=AD+ACcos I/!.

(9a)

(9b)

The active hardening of slip system 1, denoted by aTI, is thus identified with AC, and that of
slip system 2, denoted by aT2, is equal to AD. Equations (9) consequently become

(1,2) (I) (I)

aTI +aT2 cos I/! = Q2iQljaUij

(2,1) (2) (2)

a1'2 +... 'TI cos-I/! = Q2iQ1jaUjj.

(lOa)

(lOb)

The values of active hardening aTI and aT2 in these two active slip systems thus can be
(2,1)

obtained from eqns (l0) in terms of aUjj and I/!.
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Since the active hardening of both slip systems contribute to the hardening of any latent
system, denoted by the kth slip system, the latent hardening is given by

(k,l) (k,2)

~'Tl cos '" +~'T2 cos "',

The subsequent yield condition of the kth slip system consequently becomes

(k) (k) (k,l) (k,2)

Q2jQljO"jj = 'To + ~'TI cos '" +~'T2 cos "'.

(11)

(12)

Equation (12) is the counterpart of eqn (6) under duplex slip. When k is considered for all
slip systems the envelope of the planes is the subsequent yield surface of the single crystal, as
denoted by 8 1 in Fig. 4.

In general when the multiple slip involves N active slip systems (maximum 5), the total
hardening in each of these systems is consisted of N parts: its own active hardening and the
latent hardening due to the active hardening of the other N-I slip systems. The values of these
~'Tn> which satisfied eqn (10) under duplex slip, will satisfy the following N simultaneous
equations

N (m,n) (m) (m)

L ~'Tn cos '" = Q2jQlj~O"jj
n~1

(13)

(m.n)

where m = 1,2, ... N. The values of ~'Tn can be readily solved in terms of ~O"jj and cos "'. The
amount of hardening in the kth slip system attributed to the active hardening of these N slip
systems is given by

N (k,n)

L ~'Tn cos '"
n~l

(14)

where k could be an active or a latent slip system. The subsequent yield plane of the kth slip
system thus can be written as

(k) (k) N (k,n)

Q2j QljO"jj = 'To +L ~ 'Tn cos "'.
n~1

(15)

The envelope of the subsequent yield planes of all slip systems is the subsequent yield surface
of the single crystal under N multiple slips.

Criterion of an "active" slip system at the comer:
When the incremental loading AB lies within the cone of the normals EAF as shown in Fig.

4, it can be decomposed into two vectors AC and AD, each representing the active hardening
of the associated slip system. Duplex slip thus can be visualized to take place as a sequence of
two single slips, with slip system 1 active along AC and then system 2 along CB, or vice versa.
In each step the hardening rule of single crystal under single slip applies. Whether the path is
taken to be along ACB or along ADB the same final subsequent yield surface is obtained.
Under single slip since the incremental plastic strain is normal to its yield plane [14], the
resultant plastic strain under duplex slip will lie within the cone EAF. Thus dO"jj dE~ > 0 for
each single slip as well as for the duplex slip, and Drucker's stability postulate [22] is completely
satisfied.

But when the incremental loading AB lies outside the cone EAF, the questions arise: will it
cause duplex slip or single slip? If single slip which system prevails?

To answer these questions consider Fig. 5 in which vector AB lies outside the cone of the
normals EAF and leans toward the first yield plane. Following the same process vector AB is
decomposed into two components AC and AD along the normals of both yield planes. Notice
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Fig. 5. Determination of "active" slip system at the corner.

Fig. 6. Change from single to multiple slip.

AD points inward. It is evident that though loading path AC can cause single slip for slip system
1 path AD is an unloading process for slip system 2. Should it cause the second system to slip it
would have violated Drucker's postulate. This picture can also be examined in another way.
Suppose that AB would cause duplex slip, then the subsequent yield planes of both active slip
systems would have to pass through point B as shown by the dotted line RBS. But under such
circumstance the total hardening on the second slip system would be less than its latent
hardening due to slip system 1, and this is inconsistent to the nature of hardening since", < 7T/2.
(In case'" > 7T/2 the yield condition of slip system 2 at state B is obviously not satisfied.) It thus
can be concluded that though at stress state A the yield conditions of both slip systems are
satisfied, the incremtnal loading AB as shown in Fig. 5 causes only single slip in the first slip
system.

In general when the yield condition of N slip systems are simultaneously satisfied at state A,
to determine whether a slip system is actually active under an incremental loading AB acting at
the corner of the yield surface, one can decompose vector AB into N components along the
normals of these N yield planes. If this component is positive for some slip system, this system
is active. Otherwise it is inactive. Mathematically this means that if

(16)

nth slip system is active, otherwise it is not. This concept is consistent with the "loading"
criterion in continuum plasticity.

Transition from single to multiple slip:
Under radial (proportional) loading the initially active slip systems will remain active

throughout the entire deformation. However under nonradial loading some active slip systems
can become inactive and the inactive ones can become active. To construct the subsequent
yield surface under such a condition, the incremental loading can be divided into several stages,
each characterized by either a single slip or a multiple slip. The subsequent yield surface can be
determined by treating each stage separately.

Consider an incremental loading AB which intersects the normal of the first yield plane A'E
at point M (see Fig. 6). From A to M system 1 is the only active slip system, whereas from M
to B both systems 1 and 2 are active. The final subsequent yield surface can be obtained by
applying the hardening rule of single slip during AM and the hardening rule of duplex slip
during MB. If the orientation of AB is such that vector MB lies outside the cone EMF and
leans toward the second yield plane, slip system 1 will cease to be active after M while system
2 becomes active. The hardening rule of single slip will have to be used for each stage of
incremental loading.

In the event when the active slip system continues to be active while others are joing in, the
above process can be further simplified. Since the overall deformation during AB involves the
dislocation movement of two slip systems, this suggests that such a deformation might be
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treated as multiple slip. In view of the fact that the subsequent yield planes of all active slip
systems pass through B, the hardening rule under such a condition is equivalent to that under
duplex slip with an incremental loading A'B. Under A'B the amount of active hardening in
system 1 is A'C, and that in system 2 is A'D. These are indeed the amount of total active
hardening in both slip systems if AB is treated separately as described above. On the other
hand if any active slip system becomes inactive at the end of loading its subsequent yield plane
will not contain point B. Under this condition this simplification will be inadequate.

4. COMPARISON WITH PRAGER'S KINEMATIC HARDENING RULE

Prager's kinematic hardening rule, independently proposed by Ishlinskii[23], and the iso
tropic hardemng rule are among the most widely used hardening rules in plasticity. Though
Prager's hardening rule was originally proposed for the study of metals, it was used, though
without physical justifications, by Budiansky and Wu[4] to describe the hardening behavior of
single crystals. This hardening rule states that yield surface moves by a rigid body translation.
When the yield surface at the loading point is smooth it moves along the direction of its normal.
If the loading point is at the corner of the yield surface then it moves along the direction of the
incremental loading. The former condition corresponds to single slip while the latter one
corresponds to multiple slip.

First consider the hardening rule developed for the condition of single slip. The subsequent
yield planes following a single slip are given by eqn (6). The envelope of these planes is the

(k.1) (k) (k) (I) (I)

subsequent yield surface. Since cos l/J = Q2iQIj Q2iQIj, eqn (6) can be rewritten as

(k) (k) (I) (l)

Q2iQlj[ CTij - dTQ2iQld = To· (17)

(1) (I)

Since dT02iQlj is a constant value for all slip systems, comparison between eqn (17) and eqn

(2a) indicates that the subsequent yield surface is obtained through the initial yield surface by a
(I) (I) (I) (l)

rigid body translation along dT02iQlj. Since 02iQlj is normal to the initial yield plane of the

active slip system, it can be concluded that under single slip the hardening rule developed
coincides with Prager's kinematic hardening rule for a "regular" yield surface.

Next consider the case of multiple slip, or loading at the corner of the yield surface.
According to the present theory of multiple slip, the subsequent yield surface is given by eqn

(k.n) (k) (k) (n) (n)

(15). Since cos l/J = Q2iQ\jQ2iQ\j, this equation can be rewritten as

(18)

The decomposition of dCTij into several components along the normals of the yield planes
N (n) (n)

implies that ~ dTnQ2iQIj = dCTij' Equation (18) finally becomes
n=1

(k) (k)

Q2iQlj[CTij - dUij] = To· (19)

Comparison of eqn (19) with eqn (2a) indicates that the subsequent yield surface under multiple
slip can be obtained through a rigid body translation of the initial yield surface along dCTij' This
result is identical to Prager's hardening rule when the yield surface is "singular" at the loading
point.

In a series of experimental investigation on the subsequent yield surfaces of metals, Phillips
and his associates [24, 25] have consistently found that yield surface moves along the direction
of incremental stress, not along its normal. These observations were used to formulate a
hardening rule by Phillips and Weng[26]. Since single crystals tend to undergo multiple slip in
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the polycrystalline aggregate, the theory developed here serves to provide the physical basis for
their observations and hardening rule.

5. CONCLUSION AND DISCUSSION

Based on the theories of Seeger's dislocation pile-up and Orowan's dispersion hardening, the
amount of latent hardening was found to be A:T cos 8 cos t/J under single slip and

N <nJ <n)2 ATn cos 8 cos t/J under multiple slip. This hardening law was used to study the motion of
0=1

yield surface in the stress space. The derived hardening rule was found to coincide with
Prager's kinematic hardening rule. Under single slip it moves along the direction of its normal;
under multislip it moves along the direction of incremental stress.

The theory developed is consistent with the Bauschinger effect; it is also in good agreement
with the observations of Edwards and Washburn on the latent hardening of zinc, cadmium and
copper crystals. It is believed that, in the study of the elastic-plastic behavior of a poly
crystalline aggregate this theory would provide a more adequate hardening law to its constituent
single crystals.

It should be pointed out, however, that Seeger's dislocation pile-up and Orowan's dispersion
hardening are not the only hardening mechanisms in single crystals. For a more rigorous
account the additional effects on the hardening law due to other possible mechanisms should
also be included.

An important implication of the present theory is that the flow stress in the latent system
(latent hardening) is always lower than that in the active system. From a typical stress-strain
curve of changing slip systems (see Fig. 3) it is noted that the immediate flow stress of the latent
system is indeed lower than that of the active one but that its flow stress quickly exceeds that
of the active system following the plastic deformation. The latter phenomenon sometimes is
stated that the amount of latent hardening is higher than the amount of active hardening. Under
the present context it is more appropriate to state that such a phenomenon means that the latent
hardening rate is higher than the active hardening rate. Because the dislocation movement in
the newly active slip system can lead to the formation of additional sessile dislocations[15] it is
conceivable that the latent hardening rate can be higher than the active one and that plastic flow
can lead to a higher flow stress in the latent system at a later stage. But the presence of back
stress definitely implies that the immediate flow stress in the active system is higher than that in
the latent one.
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